, , , e.a.

From Mathematics to Generic Programming

Paperback Engels 2014 9780321942043
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book is a great introduction to the core principles of generic programming for the experienced programmer. The authors work through examples showing how to analyze the requirements of an algorithm and make it as general as possible. The book includes several programming “laws” of particular interest to those building software components. The authors show how programmers can become more effective by learning about the idea of abstraction and the math it relies on. In an engaging and accessible fashion, they describe how these mathematical results were first discovered and are surprisingly useful in programming.  

Specificaties

ISBN13:9780321942043
Taal:Engels
Bindwijze:Paperback

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Acknowledgments ix</p> <p>About the Authors xi</p> <p>Authors’ Note xiii</p> <p><strong>Chapter 1: What This Book Is About 1</strong></p> <p>1.1 Programming and Mathematics 2</p> <p>1.2 A Historical Perspective 2</p> <p>1.3 Prerequisites 3</p> <p>1.4 Roadmap 4</p> <p><strong>Chapter 2: The First Algorithm 7</strong></p> <p>2.1 Egyptian Multiplication 8</p> <p>2.2 Improving the Algorithm 11</p> <p>2.3 Thoughts on the Chapter 15</p> <p><strong>Chapter 3: Ancient Greek Number Theory 17</strong></p> <p>3.1 Geometric Properties of Integers 17</p> <p>3.2 Sifting Primes 20</p> <p>3.3 Implementing and Optimizing the Code 23</p> <p>3.4 Perfect Numbers 28</p> <p>3.5 The Pythagorean Program 32</p> <p>3.6 A Fatal Flaw in the Program 34</p> <p>3.7 Thoughts on the Chapter 38</p> <p><strong>Chapter 4: Euclid’s Algorithm 41</strong></p> <p>4.1 Athens and Alexandria 41</p> <p>4.2 Euclid’s Greatest Common Measure Algorithm 45</p> <p>4.3 A Millennium without Mathematics 50</p> <p>4.4 The Strange History of Zero 51</p> <p>4.5 Remainder and Quotient Algorithms 53</p> <p>4.6 Sharing the Code 57</p> <p>4.7 Validating the Algorithm 59</p> <p>4.8 Thoughts on the Chapter 61</p> <p><strong>Chapter 5: The Emergence of Modern Number Theory 63</strong></p> <p>5.1 Mersenne Primes and Fermat Primes 63</p> <p>5.2 Fermat’s Little Theorem 69</p> <p>5.3 Cancellation 72</p> <p>5.4 Proving Fermat’s Little Theorem 77</p> <p>5.5 Euler’s Theorem 79</p> <p>5.6 Applying Modular Arithmetic 83</p> <p>5.7 Thoughts on the Chapter 84</p> <p><strong>Chapter 6: Abstraction in Mathematics 85</strong></p> <p>6.1 Groups 85</p> <p>6.2 Monoids and Semigroups 89</p> <p>6.3 Some Theorems about Groups 92</p> <p>6.4 Subgroups and Cyclic Groups 95</p> <p>6.5 Lagrange’s Theorem 97</p> <p>6.6 Theories and Models 102</p> <p>6.7 Examples of Categorical and Non-categorical Theories 104</p> <p>6.8 Thoughts on the Chapter 107</p> <p><strong>Chapter 7: Deriving a Generic Algorithm 111</strong></p> <p>7.1 Untangling Algorithm Requirements 111</p> <p>7.2 Requirements on A 113</p> <p>7.3 Requirements on N 116</p> <p>7.4 New Requirements 118</p> <p>7.5 Turning Multiply into Power 119</p> <p>7.6 Generalizing the Operation 121</p> <p>7.7 Computing Fibonacci Numbers 124</p> <p>7.8 Thoughts on the Chapter 127</p> <p><strong>Chapter 8: More Algebraic Structures 129</strong></p> <p>8.1 Stevin, Polynomials, and GCD 129</p> <p>8.2 Göttingen and German Mathematics 135</p> <p>8.3 Noether and the Birth of Abstract Algebra 140</p> <p>8.4 Rings 142</p> <p>8.5 Matrix Multiplication and Semirings 145</p> <p>8.6 Application: Social Networks and Shortest Paths 147</p> <p>8.7 Euclidean Domains 150</p> <p>8.8 Fields and Other Algebraic Structures 151</p> <p>8.9 Thoughts on the Chapter 152</p> <p><strong>Chapter 9: Organizing Mathematical Knowledge 155</strong></p> <p>9.1 Proofs 155</p> <p>9.2 The First Theorem 159</p> <p>9.3 Euclid and the Axiomatic Method 161</p> <p>9.4 Alternatives to Euclidean Geometry 164</p> <p>9.5 Hilbert’s Formalist Approach 167</p> <p>9.6 Peano and His Axioms 169</p> <p>9.7 Building Arithmetic 173</p> <p>9.8 Thoughts on the Chapter 176</p> <p><strong>Chapter 10: Fundamental Programming Concepts 177</strong></p> <p>10.1 Aristotle and Abstraction 177</p> <p>10.2 Values and Types 180</p> <p>10.3 Concepts 181</p> <p>10.4 Iterators 184</p> <p>10.5 Iterator Categories, Operations, and Traits 185</p> <p>10.6 Ranges 188</p> <p>10.7 Linear Search 190</p> <p>10.8 Binary Search 191</p> <p>10.9 Thoughts on the Chapter 196</p> <p><strong>Chapter 11: Permutation Algorithms 197</strong></p> <p>11.1 Permutations and Transpositions 197</p> <p>11.2 Swapping Ranges 201</p> <p>11.3 Rotation 204</p> <p>11.4 Using Cycles 207</p> <p>11.5 Reverse 212</p> <p>11.6 Space Complexity 215</p> <p>11.7 Memory-Adaptive Algorithms 216</p> <p>11.8 Thoughts on the Chapter 217</p> <p><strong>Chapter 12: Extensions of GCD 219</strong></p> <p>12.1 Hardware Constraints and a More Efficient Algorithm 219</p> <p>12.2 Generalizing Stein’s Algorithm 222</p> <p>12.3 Bézout’s Identity 225</p> <p>12.4 Extended GCD 229</p> <p>12.5 Applications of GCD 234</p> <p>12.6 Thoughts on the Chapter 234</p> <p><strong>Chapter 13: A Real-World Application 237</strong></p> <p>13.1 Cryptology 237</p> <p>13.2 Primality Testing 240</p> <p>13.3 The Miller-Rabin Test 243</p> <p>13.4 The RSA Algorithm: How and Why It Works 245</p> <p>13.5 Thoughts on the Chapter 248</p> <p><strong>Chapter 14: Conclusions 249</strong></p> <p><strong>Further Reading 251</strong></p> <p><strong>Appendix A: Notation 257</strong></p> <p><strong>Appendix B: Common Proof Techniques 261</strong></p> <p>B.1 Proof by Contradiction 261</p> <p>B.2 Proof by Induction 262</p> <p>B.3 The Pigeonhole Principle 263</p> <p><strong>Appendix C: C++ for Non-C++ Programmers 265</strong></p> <p>C.1 Template Functions 265</p> <p>C.2 Concepts 266</p> <p>C.3 Declaration Syntax and Typed Constants 267</p> <p>C.4 Function Objects 268</p> <p>C.5 Preconditions, Postconditions, and Assertions 269</p> <p>C.6 STL Algorithms and Data Structures 269</p> <p>C.7 Iterators and Ranges 270</p> <p>C.8 Type Aliases and Type Functions with using in C++11 272</p> <p>C.9 Initializer Lists in C++11 272</p> <p>C.10 Lambda Functions in C++11 272</p> <p>C.11 A Note about inline 273</p> <p>Bibliography 275</p> <p>Index 281</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        From Mathematics to Generic Programming